
Prime factorization using quantum annealing and
computational algebraic geometry:
Supplementary materials
Raouf Dridi1,* and Hedayat Alghassi1, **

11QB Information Technologies (1QBit), Vancouver, British Columbia, Canada, V6C 2B5
*raouf.dridi@1qbit.com
**hedayat.alghassi@1qbit.com

ABSTRACT

We give present 1) the embedding and solving statistics using D-Wave 2X processor DW2X SYS4, in addition to Gröbner
bases computations details 2) solutions of the continuous optimization problem introduced in Results and 3) a basic description
of the quantum annealing processor we have used i.e., DW2X SYS4.

Embedding, solving and Gröbner bases computations details
We have used one of the D-Wave 2X processors, DW2X SYS4, as our quantum annealing solver. This processor operates at
a temperature range of 26(±5) millikelvin (mK) and has 1100 qubits with a 95.5-qubit yield. To utilize the processor, we
used D-Wave’s SAPI software development kit (version 2.2.1). To embed the problem graph into the hardware graph we
used the sapiFindEmbedding and sapiEmbedProblem modules, and to solve the problems we used the sapiSolveIsing and
sapiUnembedAnswer modules. For all problems we opted for the maximum number of reads available (10 000) in order to
increase the fraction of ground state samples. The following table shows some statistics of the embedding and solving stages
for several of the highest numbers that we were able to successfully embed and solve.

Embedding&SolvingStatistics

M n emTry idC prC #qubits jRatio rTime
31861 95 33 848 721 815 10 3.52
34889 95 27 803 740 833 10 3.52

150419 73 1 941 830 902 64 3.52
151117 72 7 1001 846 918 64 3.52
174541 72 3 1004 897 966 64 3.52
200099 75 5 884 824 897 64 3.52

In the above table, M stands for the bi-prime, n is the number of variables in the QUBO problem, emTry is the number of block
trials of the sapiFindEmbedding routine, idC is the total number of identified couplers, prC is the total number of problem
couplers, #qubits is the total number of (physical) qubits, jRatio is the ratio max({|Ji j |})

min({|Ji j |}) , and rTime is the chip run time in seconds.

For Gröbner bases computation, we have used J. C. Faugère FGb C library available at http://www-polsys.lip6.fr/
˜jcf/. The calculations were performed on 2.5 GHz Intel Core i5 processor with 16 GB RAM. This hardware constrained the
cutoff to be around 8 and around 4 for (sp + sq +1)−2ndcutoff. The percentage R% of the obtained reduction is reported
in the main text (Cell Algorithm and Column Algorithm tables) and is around 13% for the Cell Algorithm and 35% for the
Column Algorithm. We could not achieve more reduction (for the bi-prime numbers reported) using this hardware.

Continuous optimization problems for the requirements (ii–iii)

In Results, we describe how a positive quadratic polynomial H+
i j can be extracted using Gröbner bases. Here we provide the

details of the calculation.

http://www-polsys.lip6.fr/~jcf/
http://www-polsys.lip6.fr/~jcf/

The second requirement (ii) is equivalent to each of the following linear polynomials being greater than zero:

a1,−a1 +a3,−a1−a4,−a1 +a5,−a1 +a6,2a1 +a3,2a1−a4,−a2−a1,−a2 +2a1,

−2a1 +a3 +2a5,−2a1 +a3 +2a6,−2a1−a4 +2a5,−2a1−a4 +2a6,−a1 +a5 +a6,

a1 +a3−a5,a1 +a3−a6,a1−a4−a5,a1−a4−a6,−a2−2a1 +2a5,−a2−2a1 +2
a6,−a2 +a1−a5,−a2 +a1−a6,−2a1 +a3 +2a5 +2a6,−2a1−a4 +2a5 +2a6,

a1 +a3−a5−a6,a1−a4−a5−a6,−a2−2a1 +a3−a4,−a2−2a1 +2a5 +2a6,

−a2 +a1−a5−a6,−a2 +3a1 +a3−a4,−a2−3a1 +a3−a4 +3a5,

−a2−3a1 +a3−a4 +3a6,−a2 +2a1 +a3−a4−2a5,−a2 +2a1 +a3−a4−2a6,

−a2−3a1 +a3−a4 +3a5 +3a6,−a2 +2a1 +a3−a4−2a5−2a6

For the third requirement (iii), the first choice for the objective function f : R5→ R is

f (a1, . . . ,a6) =
(
(−a1 +a5 +a6)

2−1
)2

+
(
(−2a1 +a3 +2a5 +2a6)

2−1
)2

+
(
(a1−a2−a5−a6)

2−1
)2

+
(
(a1−a4−a5−a6)

2−1
)2

+ 2
(
a2

2−1
)2

+
(
a1

2−1
)2

+2
(
a3

2−1
)2

+2
(
a4

2−1
)2

+ 2
(
a5

2−1
)2

+2
(
a6

2−1
)2

+
(
4a5

2−1
)2

+
(
4a6

2−1
)2

The solution is a1 = 0.214, a2 =−1.082,a3 = 0.514,a4 =−1.082, a5 = 0.314, and a6 = 0.314.

The second choice for f is

f (a1, . . . ,a6) =
(
(−a1 +a5 +a6)

2−a2

)2
+
(
(−2a1 +a3 +2a5 +2a6)

2−a2

)2

+
(
(a1−a2−a5−a6)

2−a2

)2
+
(
(a1−a4−a5−a6)

2−a2

)2

+ 2
(
a2

2−a2
)2

+
(
a1

2−a2
)2

+2
(
a3

2−a2
)2

+2
(
a4

2−a2
)2

+ 2
(
a5

2−a2
)2

+2
(
a6

2−a2
)2

+
(
4a5

2−a2
)2

+
(
4a6

2−a2
)2

(1)

The solution is a1 = 1.0,a2 =−4.0,a3 = 4.0,a4 =−4.0,a5 = 2.0, and a6 = 2.0 (identical to the solution given in1).

Basic description of the quantum annealing processor
Here we introduce the quantum annealing concept that ultimately solves a general Ising (quadratic unconstrained binary
optimization, or ”QUBO”) problem, then talk about the important topic of embedding a QUBO problem into the specific
quantum annealer (the D-Wave 2X processor).

Quantum annealing (QA), along with the D-Wave processors, have been the focus of much research. We refer the interested
reader to2–9. QA is a paradigm designed to find the ground state of systems of interacting spins represented by a time-evolving
Hamiltonian:

S (s) = E (s)HP−
1
2 ∑

i
∆(s)σ x

i ,

HP =−∑
i

hiσ
x
i +∑

i< j
Ji jσ

z
i σ

z
j .

The parameters hi and Ji j encode the particular QUBO problem P into its Ising formulation. QA is performed by first setting
∆� E , which results in a ground state into which the spins can be easily initialized. Then ∆ is slowly reduced and E is
increased until E � ∆. At this point the system is dominated by HP, which encodes the optimization problem. Thus, the
ground state represents the solution to the optimization problem.

An embedding is the mapping of the nodes of an input graph to the nodes of the destination graph. The graph representing
the problem’s QUBO matrix needs to be embedded into the actual physical qubits on the processor in order for it to solve

2/3

the QUBO problem. The specific existing connectivity pattern of qubits in the D-Wave chip is called the Chimera graph.
Embedding an input graph (a QUBO problem graph) into the hardware graph (the Chimera graph) is in general NP-hard (10).

Figure 1–right shows an embedding of the (column algorithm) QUBO corresponding to the bi-prime M = 200 099 into the
Chimera graph of the D-Wave 2X chip consisting of a 12 by 12 lattice of 4 by 4 bipartite blocks. The Chimera graph is
structured so that the vertical and horizontal couplers in its lattice are connected only to either side of each bipartite block. Each
node in this graph represents one qubit and each edge represents a coupling between two qubits. Adjacent nodes in the Chimera
graph can be grouped together to form new effective (i.e., logical) nodes, creating nodes of a higher degree. Such a grouping is
performed on the processor by setting the coupler between two qubits to a large negative value, forcing two Ising spins to align
such that the two qubits end up with the same values. These effective qubits are expected to behave identically and remain in
the same binary state at the time of measurement. The act of grouping adjacent qubits (hence forming new effective qubits) is
called chain creation or chain identification.

An embedding strategy consists of two tasks: mapping and identification. Mapping is the assignment of the nodes of the input
graph to the single or effective nodes of the destination graph. Solving such problems optimally is in general NP-hard, but one
can devise various approximations and enhancement strategies to overcome these difficulties, for example, using statistical
search methods like simulated annealing, structure-based methods, or a combination of both. For a better understanding of
current embedding approaches, we refer the reader to10–13. In Figure 1–right, the blue lines indicate the identified couplers, the
yellow lines indicate the problem couplers (i.e., the edges of the problem graph), and the grey lines indicate empty couplers.

References
1. Schaller, G. & Schutzhold, R. The role of symmetries in adiabatic quantum algorithms. Quantum Information &

Computation 10, 109–140 (2010).

2. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363 (1998).

3. Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science
292, 472–475 (2001).

4. Das, A. & Chakrabarti, B. K. Colloquium : Quantum annealing and analog quantum computation. Rev. Mod. Phys. 80,
1061–1081 (2008).

5. Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).

6. Calude, C. S., Calude, E. & Dinneen, M. J. Guest column: Adiabatic quantum computing challenges. SIGACT News 46,
40–61 (2015).

7. Boixo, S., Albash, T., Spedalieri, F. M., Chancellor, N. & Lidar, D. A. Experimental signature of programmable quantum
annealing. Nat Commun 4 (2013).

8. Boixo, S. et al. Evidence for quantum annealing with more than one hundred qubits. Nat Phys 10, 218–224 (2014).

9. Lanting, T. et al. Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041 (2014).

10. Choi, V. Minor-embedding in adiabatic quantum computation: I. the parameter setting problem. Quantum Information
Processing 7, 193–209 (2008).

11. Bian, Z. et al. Discrete optimization using quantum annealing on sparse ising models. Frontiers in Physics 2 (2014).

12. Jun, C., William, G. M. & Aidan, R. A practical heuristic for finding graph minors. Preprint arXiv:1406.2741 (2014).

13. Tomas, B., Andrew, D. K. & Aidan, R. Fast clique minor generation in chimera qubit connectivity graphs. Preprint
arXiv:1507.04774 (2015).

3/3

	References

